
 

Analysis of Shock and High-Rate Data for 
Ceramics:  Strength and Failure of Brittle 
Solids  

Report 

by 
Dennis E. Grady  
 

Prepared for 
U.S. Army TARDEC 
Emerging Technologies Team 
 

July 2007 

Contract No. W56HZV-05-P-L682 

ARA Project No. 17168 

Applied Research Associates, Inc. 
4300 San Mateo Blvd. NE, Suite A-220 
Albuquerque, New Mexico  87110 
(505) 883-3636 

 
 



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE  
07/31/2007 

2. REPORT TYPE  
Final 

3. DATES COVERED (From - To) 
August, 2005 – August,2006; April,2007 

4. TITLE AND SUBTITLE 
Analysis of Shock and High-Rate Data for Ceramics: Strength  

5a. CONTRACT NUMBER 
W56HZV-05-P-L682 

 
and Failure of Brittle Solids 

5b. GRANT NUMBER 
 

 
 

5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
Grady, Dennis, E 

5d. PROJECT NUMBER 
17168 

 
 

5e. TASK NUMBER 
 

 
 

5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

Applied Research Associates, 
Inc. 
4300 San Mateo Blvd, NE    
Ste A-220 
Albuquerque, NM  87110 

 
 
 
 
 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
U S Army Tacom  TARDEC 
6501 E. 11 Mile Road   
Warren, MI  48397-5000  11. SPONSOR/MONITOR’S REPORT  
        NUMBER(S) 
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 
 
 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
Ceramics based on composition of the light intermetallic compounds, have demonstrated 
considerable success as a barrier material in armor applications. The exceptional strength-
to-density ratio of ceramic plays a crucial role in the positive performance of ceramics in 
the terminal ballistic environment. Even the higher density ceramics, such as tungsten based 
materials, show promising behavior in space-limited armor applications. 
 
The implementation, optimization and evaluation of ceramic in armor systems benefit from the 
rapidly growing power of computational analysis and simulation. Production codes such as 
EPIC. CTH, ALE-3D, among others, are making large strides toward the accurate and efficient 
simulations of the wide-ranging armor and anti-armor applications of concern. 
 
 
Central to the confident computational simulation of the performance of ceramics in the 
terminal ballistic environment is, of course, material response models, which describe the 

i i b h i f h i i l h f d f i15. SUBJECT TERMS 
 

16. SECURITY CLASSIFICATION OF: U 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
Dennis Grady 

a. REPORT 
UU 

b. ABSTRACT 
UU 

c. THIS PAGE 
UU 

UU  
 

19b. TELEPHONE NUMBER (include area 
code)   505-883-3636 
 

 Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 



 

 

 



   

 

Acknowledgments 

The author wishes to thank attendees of the several meetings hosted during this program 
year, on topics of ceramic armor materials testing and development, for providing stimu-
lus for the work reported here.  In particular, the author thanks Lisa Prokurat-Franks, 
Douglas Templeton, Timothy Holmquist, Gordon Johnson, Datta Dandekar, Murli 
Mangnani, Xin Sun, Charlie Anderson and Dennis Orphal for their respective incentives 
and input. 

The author also wishes to thank Tracy Vogler and Lalit Chhabildas at Sandia National 
Laboratories for continuing discussions on topics of this report and Craig Doolittle and 
Terry Caipen at Applied Research Associates for technical help on several parts of the 
report.  Partial support for the present research was also provided by Sandia National 
Laboratories through the DOE/DOD MOU Munitions Technology Development 
Program.



Analysis of Shock and High-Rate Data for Ceramics:  Strength and Failure of Brittle Solids 

ARA Project No. 17168  i 

Table of Contents 

I Introduction and Summary ................................................................................... 1 

Introduction.............................................................................................................. 1 

Summary ................................................................................................................. 2 

II Background............................................................................................................ 5 

III Progression of Strength and Failure Models ...................................................... 7 

Observations of Failure wave Phenomena .............................................................. 7 

A Meso-Kinetic Model of Delayed Failure ................................................................ 9 

Relationship of Physics Based Model to Other Studies ......................................... 21 

IV Impact Breach of Glass and Ceramic Plate....................................................... 23 

The Ballistic Model................................................................................................. 23 

Failure Criterion ..................................................................................................... 27 

Experiments on Impact Breach of Float Glass....................................................... 29 

Failure Toughness of Glass Plate.......................................................................... 30 

Post-Failure Fracture Damage............................................................................... 31 

Residual Projectile Velocity.................................................................................... 34 

V Fragmentation of Ceramics ................................................................................ 35 

Hydrodynamic Turbulence..................................................................................... 35 

Catastrophic Fracture ............................................................................................ 36 

VI Closure ................................................................................................................. 40 

VII References ........................................................................................................... 42 

 

 



Analysis of Shock and High-Rate Data for Ceramics:  Strength and Failure of Brittle Solids 

ARA Project No. 17168 1

I Introduction and Summary 
The U.S. Army is considering high quality ceramics prepared from light inter-metallic 
compounds as engineering materials for armoring vehicles against kinetic energy threats.  
Application of ceramics within armor systems requires a full understanding of the physical 
and mechanical response of ceramics to the range of impact and penetration conditions of 
concern.  The present report documents continued work in support of the TARDEC/ARL 
efforts on this topic. 

Introduction 
The project effort reported on here is a continuing study undertaken to collect, survey, 
analyze and model shock-wave and other related high-rate data available for candidate armor 
ceramics with emphasis on response in the ballistic environment.  Ceramics considered here 
include the various light inter-metallic compounds selected by the Army for consideration 
such as silicon carbide and aluminum oxide, as well as other ceramics and glasses currently 
being pursued by TARDEC with high potential for armor applications. 

The TARDEC/Army Research Laboratories program in armor ceramics currently involves a 
number of efforts at various facilities including materials research, experimental studies and 
computational modeling.  Thus, the present effort focuses on available data, analysis 
approaches and theoretical concepts, not currently under consideration at other laboratories, 
which best complements and furthers goals of the current TARDEC program. 

The present effort also includes physics-based modeling of the response of ceramics under 
impact and penetration for purposes of furthering computational modeling of ceramics in 
armor applications.  This supporting theoretical effort serves both the furthering of 
computational models, and the analysis and interpretation of data necessary to benchmark the 
models.  Both objectives fall within the tasks of the present project. 

New physics-based models of ceramic response under shock and high-rate loading are 
presented here.  Emphasis is on, but not restricted to, the influence of microstructure and 
mesostructure on the high-rate and shock-compression response of ceramics experienced in 
the armor applications events.   Such microstructure and mesostructure result from a range of 
heterogeneities in polycrystalline solids, including porosity and second phase material.  Data 
emphasizing these microstructure features for the ceramics of current interest to TARDEC 
are presented.  These data are evaluated within the framework of the new physics-based 
models.  Results of these efforts contribute directly to material response properties necessary 
for computational modeling and simulation of armor applications involving ceramic 
components. 

Several specific theoretical and modeling efforts are also undertaken in the present study.  
These efforts have several objectives:  One objective is to clarify the regimes and character 
of shocks in the ballistic impact environment.  This modeling study provides focus for 
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exploration of ceramic strength in the ballistic event – in particular the failure, or fracture, 
wave phenomena.  Another objective is the examination of size scaling in the catastrophic 
failure of brittle solids.  This issue relates to the selection of material properties in the 
response models which adequately capture the observed scaling behavior.   

The present effort culminates with a new approach to the modeling of strength and failure of 
brittle solids such as glass and ceramics.  Although not yet completed here in detail, some of 
the essential features are described, and directions for further study are outlined.   

Summary 
The principle thrust of this effort continues to be the collection, assessment and presentation 
of shock-wave and high-strain-rate data on ceramics and ceramic-like materials in support of 
the U.S. Army TARDEC/ARL program on vehicle armor development.  The emphasis 
focuses on characterization of dynamic material response within the armor impact and 
penetration environment for purposes of computational and engineering model assessment.  
Progress towards this end is summarized here and described in detail within the remainder of 
the report. 

Modeling of ceramic and glass has continued in the present program year.  Time dependent 
or delayed failure of ceramic and glass are evident in planar shock experiments and may play 
a significant role in the ballistic impact event including dwell and penetration resistance.  A 
theoretical model of failure of brittle materials based on kinetics of mesoscopic fracture is 
pursued this year.  The impact resistance of ceramic and glass plate have application to 
transparent and appliqué armor.  A model, which enlightens the size scale dependence and 
the time dependent strength of armor plate, is developed in support of computational 
modeling efforts.  The strength of failed ceramic in the penetration environment is a key 
contribution to the ballistic resistance and is not well understood.  Theoretical efforts are 
pursued to better understand the character of the failed and comminuted ceramic including 
fragment size and distribution. 

Specifically, the following accomplishments are documented in the present report: 

• An accumulation of experimental evidence over approximately the last two decades 
including quite recent experimental results [Vogler et al., 2006] suggests a transient 
strength and time-delayed failure of brittle solids including those ceramics and glass 
with armor application potential.  A survey of the evidence for the strength and 
failure behavior is undertaken and the underlying responsible physics is explored.  A 
physical behavior governed by time-dependent equilibration of a mesoscopic stress 
state following transient loading is proposed.  A physics-based and statistical meso-
kinetics model is developed.  A preliminary application of the model provides a 
credible and physically satisfying prediction of delayed failure, or failure wave, 
behavior for shock loaded soda-lime glass.   
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Some relationships of the present model with recent research at Rutgers University 
[Niesz, 2005] and computational model development and validation [Holmquist and 
Johnson, 2006] are discussed. 

• This study further pursues theoretical analysis and modeling of impact failure and 
breach of ceramic and glass plate subject to high-speed fragment impact.  An analytic 
representation of the impact momentum transfer provides a relation for the time-
dependent shear stress suffered by the brittle plate on impact.  A Tuler-Butcher 
failure criterion [Tuler and Butcher, 1968] based on the time history of the shear 
stress provides in turn a plate breach criterion.  Within the Tuler-Butcher framework, 
breach criteria based on stress, on work, or on impulse exhibit increasing degree of 
non-replica scaling. 

Recent data [Sun et al., 2006] delineating the onset of failure of glass plate subjected 
to impact of steel spherical projectiles are ideal for exploring the impact physics 
uncovered with the theoretical model.  The data are best described by a work (or 
energy) based Tuler-Butcher failure criterion.  Failure exhibits non-replica scaling 
decreasing as the square root of the system size. 

The critical Tuler-Butcher constant fit to the glass failure data has dimensions of 
energy.  Consequently, the constant can be expressed in units of fracture toughness 
(called here the failure toughness) and compared with the standard fracture toughness 
of glass.  A failure toughness of glass plate of 25.9 MPa m1/2 is determined by the 
data, differing starkly from the approximately 0.5-1.0 MPa m1/2 fracture toughness for 
glass.  Thus, a two-strength property of glass plate governs failure and breach of the 
plate on one hand, and accumulation of fracture damage in the glass on the other. 

The theoretical model is extended to predict the extent of radial fracture damage 
subsequent to impact breach of the glass plate.  Fracture toughness of the glass and 
the rate of loading imparted by the impact are used to calculate the number and 
propagation distance of radial fractures. 

Lastly, the model is used to calculate the residual velocity of projectile and leading 
debris following breach of the glass plate. 

• The study also initiates an effort explain underlying physical principals of impact 
fragmentation of ceramics with focus on support of improved computational 
modeling of post-failure resistance of comminuted ceramic in the terminal ballistic 
event.  Failure of ceramic in the ballistic event involves pervasive brittle fracture and 
fragmentation of the high-strength material.  Ballistic resistance of ceramic involves 
the strength up to failure, and the continued strength through and beyond the fracture 
and fragmentation stages of the response.  Physics-based modeling of the ceramic 
response for purposes of predicting ballistic events requires physical understanding of 
the nature of the dynamic fracture and fragmentation behavior of the brittle solids. 

This effort points out an elucidating parallel between catastrophic fragmentation of 
brittle solids and hydrodynamic turbulence in fluids.  The analogy clarifies the size 
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scale invariance and power-law behavior of observed fragment size distribution of 
comminuted ceramic over much of the range of the distribution.  From this 
understanding, a clearer comprehension of the form of the particle distribution is 
emerging.  A functional form for the fragment distribution is proposed and explored 
with available data.  Improved characterization of the failed ceramic will better 
support strength and shear resistance modeling of impact degraded ceramic materials.  
This latter theoretical study is preliminary and will continue in the following program 
year. 

• Presentations of the current program progress have been made at the following 
project meetings: 

- Working Group Meeting, Sandia National Laboratories, Albuquerque, New Mexico, 
December 5-6, 2005. 

- Army Research Office Workshop, Washington DC, February 14-15, 2006. 

- Working Group Meeting, Purdue University, West Lafayette, Indiana, June 21-22, 
2006. 

A paper on Dynamic Strength of Ceramics was presented at the International 
Plasticity Conference, Halifax, Nova Scotia, July 17-21, 2006. 
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II Background 
The benefits of using computers to simulate the interactions of weapons and armor systems 
are readily apparent.  Economics and system/materials optimization are among the obvious 
benefits.  There are challenges, however, which must be overcome before such 
computational tools become fully reliable and can realize the many available benefits.  
Namely, the description of materials and their response within the extreme terminal ballistic 
environment must be faithful. 

Similarly imaginative engineering models based on good physical understanding of the 
ballistic phenomena have, and will continue to have, an important role in the assessment of 
armor and weapon performance. 

In both computational and engineering endeavors the dynamic material response and the  
constitutive models describing material response over the range of deformations and 
thermodynamic conditions experienced must be fully understood and adequately 
characterized.   

Within the present effort, these issues are restricted to ceramics and ceramic-like materials, 
and their role as armor components within the armor/anti-armor terminal ballistic event.  The 
physics of failure and deformation of brittle solids such as ceramics and glass within the 
terminal ballistic environment is not yet fully understood.  Phenomenological behaviors such 
as dwell, failure waves, fracture kinetics and phase transformation are still topics of active 
research.  Consequently, computational constitutive models developed to describe the 
response of ceramic materials in armor applications must be viewed as tentative.  
Nonetheless, considerable progress is continually being made on such model development 
[e.g., Holmquist and Johnson, 2002] and improvements can be expected to continue. 

Engineering ceramics are commonly complex polycrystalline solids in which detailed 
chemical and material processing methodologies have been developed and pursued to 
enhance specific properties critical to the intended system performance.  This careful 
tailoring of ceramic properties to improve performance is rapidly maturing in the armor 
application of ceramics.  Microstructure features such as porosity, second phase material, 
controlled anisotropy, and so forth, are increasingly being recognized as either detrimental 
to, or an enhancement to, armor performance under specific conditions. 

Even transparent glass, which emerges as an important armor material of interest in this 
report, when examined on an adequately small length scale exhibits a stress concentrating 
defect structure which must play a role in the strength and ultimate failure of glass and glass 
bearing structures.   

One difficulty arises in determining constitutive models which adequately describe the 
dynamic response of the new materials in computer simulations of ballistic events.  The cost 
in time and resources, which would be necessary to perform the usual suites of material 
properties tests on new materials of interest, becomes rapidly exorbitant.  It therefore 
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becomes necessary to pursue other, more expedient, methods to estimate sensible response 
models. 

It is possible, in certain cases, to adequately estimate equation of state and dynamic strength 
properties of more complex engineering materials through appropriate mixing or 
extrapolation/interpolation of the properties of this material’s simpler component materials.  
For example, it is possible to make reasonable estimates of the equation of state and strength 
of a porous ceramic if the corresponding properties of the monolithic ceramic are available.  
Or, as another example, when appropriate properties of component materials are known, 
sensible descriptions of the constitutive equation of state of a ceramic mixture of these 
components can be determined.  

Within the charter of the present program of surveying and analyzing earlier shock-wave and 
high-rate data for armor ceramics, analysis and theoretical modeling is continued with 
emphasis on extracting information from these earlier data that are relevant to the physical 
understanding and modeling of the ballistic event.  Both recently developed, and earlier, but 
not commonly known, analysis and theoretical approaches are pursued.  Applications of the 
theoretical efforts and analysis are examined in light of available data for ceramics and glass. 
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III Progression of Strength and Failure Models 
The section explores physical theories and models in pursuit of a better understanding of the 
strength and failure behavior of brittle materials in the shock wave and ballistic environment 
with the objective of developing better fidelity physical and computational response models.  
In particular the physics underlying failure wave phenomena are investigated and a 
framework for a physics- and statistics-based model of failure is proposed.  Some 
relationships of this model to recent work by others are talked about. 

Observations of Failure wave Phenomena 
It has become common in recent years to identify the observed delay in fracture failure, after 
passage of the shock wave, as a failure wave [Kanel et al., 1992].  Earlier manifestations of 
the fracture kinetic phenomena were observed in a number of brittle materials.  In certain 
hard rock materials, with compressive and fracture strengths comparable to current ceramics, 
the existence of upper and lower failure surfaces have been observed due to the delaying 
kinetics of fracture. These strength features lead to an effective rate dependent, or time 
dependent, failure under shock and high-rate loading [Grady et al., 1977; Grady, 1995; 
Grady, 1998].  Brannon et al. (1983) observed a process of coarse shear failure features 
following initially elastic shock compression in single crystal quartz and lithium niobate 
crystals with high resolution photography.  Earlier Soviet work inferred the existence of a 
fracture wave phenomena in the high velocity penetration of brittle solids (e.g. Galanov et 
al., 1989). 

Kanel et al. (1992) provided the first clear evidence on the nature of the stress state in brittle 
materials accompanying the failure-wave fracture process behind the shock wave.  Kanel et 
al. used normal- and transversely-oriented piezo-resistive stress gages to monitor the 
corresponding stress in glass, and recorded the marked loss in stress difference as the delayed 
fracture process proceeded within the failure wave.  Since this seminal study, a marked 
acceleration in experimental activity has focused on this topic in attempting to better 
understand its unique dynamic failure features.  In spite of this focus of activity, the 
underlying physics governing the failure wave phenomena are still far from clear. 

High speed photography [Brannon, 1983; Bourne, et al., 1994] has provided compelling 
evidence for the delayed failure wave and fracture kinetic phenomena.  Other diagnostics are 
needed, however, to assess stress and deformation features within the failure event.  A 
complementary diagnostic is provided by the orthogonal stress gages measurements of Kanel 
et al. (1992) on glass, and velocity interferometry records obtained in the shock loading of 
soda-lime glass [Grady and Chhabildas, 1997].  The stress profiles of Kanel et al. in 
Figure (1) show an initial abrupt rise of the longitudinal and transverse stress to markedly 
different amplitudes suggestive of elastic response of the glass under the uniaxial-strain 
shock-wave loading.  The recorded stress difference behind the initial shock provides a 
measure for calculating the strain energy stored in elastic distortion.  Failure through shear 
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fracture appears to occur several 
microseconds after passage of the 
shock wave as suggested by a rapid 
drop in stress difference and is 
accommodated principally by a 
marked rise in the lateral stress 
amplitude. 

Free surface velocity histories 
recorded with VISAR diagnostic 
methods induced through shock 
wave loading of soda-lime glass are 
shown in Figure (2) and bear little 
resemblance to the profiles of Kanel 
et al.  Velocities at a free surface 
are, however, far removed from the 
in-material measurement of stress 
histories.  It is also important to 
remember that piezo-resistive gages span a sensible area within the test sample.  Such gages 
encompass several millimeters or more and presumably measure a reasonable average stress 
over the area subtended.  In contrast, the VISAR diagnostic is closer to a point measurement 
with laser spot diameter usually considerably less than a tenth of a millimeter. 

Attention is focused on the two lowest 
amplitude profiles in Figure (2), and the 
two rather chaotic looking VISAR 
records next higher in amplitude.  These 
two sets of records correspond to shock 
stress amplitudes of about 4.5 GPa and 
6.5 GPa, respectively; well within the 4-
7 GPa range that other workers have 
suggested failure wave behavior in soda-
lime glass.  The successively higher 
stress amplitude tests presumably 
exceed the shock amplitude at which the 
glass transitions to a homogenous 
Hugoniot-elastic-limit and post-HEL 
yield behavior.  The two profiles at 
about 6.5 GPa suggest failure through a 
coarse fracture process in regions 
reasonably close to the front of the 
shock near the point of the VISAR measurement.  The lower amplitude profiles suggest 
nominal elastic response of the glass to the 4.5 GPa shock stress level.  The gradual drop in 
velocity, of about 25 to 35 m/s, behind the shock front hints at more complex processes 
occurring, however.  This relaxation in velocity prior to any expected release wave suggests 
a modest drop in longitude stress and corresponding increase in the specific volume strain 
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( 10%∼ ).  It is reasonable to speculate that the observed behavior is a consequence of 
delayed shear fracture induced dilation brought about by the failure process some time after 
passage of the shock wave. 

A Meso-Kinetic Model of Delayed Failure 
A physically satisfying theory of the dynamic failure of brittle solids should include two 
principal features.  First, the theory should provide an explanation of the underlying physical 
character of the material that gives rise to this unique dynamic failure behavior.  Second, this 
character of the material should be imbedded within a physics-based model that leads to a 
satisfactory description of the observed behavior of dynamic failure in brittle solids. Such 
failure behavior should include the shock wave stress and velocity data for glass discussed 
previously, as well as a host of other strength and failure properties unique to brittle solids.  
A theory of strength in brittle solids is developed in the following sections that attempts to 
address the two questions posed. 

Material Features Governing Failure in Brittle Solids  

The theory that will be pursued will be called a meso-kinetic theory of the strength of brittle 
solids.  As will be shown, this name is descriptive of the material aspects of the underlying 
physics to be proposed.  The single key attribute of brittle solids, which must be accepted 
before pursuing the theory, is that when a brittle solid is subjected to a mechanical load, there 
is a long-range (meso-scale) correlation of the induced stress and elastic strain field at any 
point in the body.  That is, the stress at a material point depends not only on properties of the 
material at that point, but also on properties in some mesoscopic neighborhood of that point.  
The spatial extent of this correlation length is not yet fully understood, but for a granular 
solid it is envisioned to be tens of grains, and perhaps as much as hundreds of grain or more.  
This premise is assumed to apply to amorphous brittle materials as well. 

To further illustrate the stress state and meso-scale correlation within a brittle body, consider 
a cylindrical specimen of such a solid (ceramic, glass, concrete, competent rock).  Subject the 
sample to a uniform static axial load within the elastic limits of the material, and further 
confine the specimen to zero lateral motion.  In response to this loading, a macroscopic axial 
stress xσ  and lateral stress yσ  will be developed in the body to support the elastic 
deformation.  This uniaxial loading is appropriate since we will shortly consider subjecting 
the same sample to shock wave loading under which the same global stress conditions are 
achieved. 

Imagine a line or trace interior to the sample across the diameter along which the stress is 
monitored on increasingly finer length scales as illustrated in Figure (3).  Only the deviator 
stress τ  is of interest, since this will be considered as the stress driving fracture in the theory.  
Following from the premise a long range correlation of the local stress state, it is expected 
that, at some sufficiently small length scale, variations in the local stress state τ  from the 
homogenous or average stress τ  will occur.  As the length scale over which stress is monitor 
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becomes even finer, fluctuations in the local stress state will become increasingly chaotic and 
probably fractal in character.  It is fluctuations in the local stress deviator over the 
mesoscopic range of perhaps tens of micrometers to millimeters that lie at the heart of the 
present theory.  (This range can, of course, extend much further in more heterogeneous 
materials such as concrete or rock media.)  
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Figure 3: Illustrates variations of the local shear stress state due 
to meso-scale heterogeneities in material properties.
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What are the sources leading to the long range correlations of the stress at a material point 
and the corresponding variations of this local stress from the average?  These sources will 
not be quantified at this juncture, but qualitatively it lies within all of the imperfections 
inherent to engineering materials.  Such imperfections include features such as impurities, 
chemical inhomogeneities, porosity, second phase, internal strains, and granular correlations 
along with hosts of others. 

The present theory will show that the dynamic mesoscopic response of the material is 
responsible, at least in part, for the unique time-dependent failure behavior observed for 
brittle solids.  It follows that this mesoscopic character must be a property of the material 
and, as such, measurable by some independent means.  Some possible methods for 
experimentally assessing this meso-scale property of the material will be explored in a later 
section. 

The existence of a mesoscopic stress field with long-range (mesoscale) stress correlations has 
potential implications to several strength features of brittle solids.  Brittle solids are noted for 
exhibiting a size dependent strength when self-similar structures are subjected to similar 
loads to the point of failure.  Size dependent strength might be expected when the zone of 
failure onset within the loaded body becomes comparable in size to correlation length scales 
in the mesoscopic stress field.  This phenomenon relating to the strength of brittle solids can 
be pursued further within the context of the present theory.  This pursuit is not, however, 
central to the thesis of the present study.  It is brought forth here, because when size 
dependence is noted in strength tests such as indentation hardness or triaxial compression, 
there are possibilities of relating such data to dynamic strength through the present theory. 
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Another strength feature, and the one that is central to the present development, is that of the 
failure of brittle solids subjected to strong shock waves.  When a sharp shock passes through 
a brittle solid resulting in a continuum axial and lateral stress, xσ  and yσ , comparable to that 
of the statically loaded specimen discussed earlier, the same mesoscopic stress field is not 
immediately achieved.  There is instead a time dependence to the stress field as equilibration 
over the mesoscale correlation length scales is achieved.  This equilibration process lies at 
the heart of the present meso-kinetic theory, and is pursued in further detail in the sections 
ahead. 

Fracture at the Mesoscale  

Fracture after passage of the shock wave will initiate at fracture producing flaws.  A Griffith 
flaw is commonly considered in linear elastic fracture mechanics, and stresses in the 
neighborhood of the Griffith crack are written as [e.g., Freund, 1990 ],  

 ( ) ( )
, ij

ij

f
r K

r
θ

σ θ , (1) 

The parameter K  is the stress intensity factor and in the present application, is written 
K dτ  where, d  is the crack dimension and τ  the neighboring shear stress field.  
Depending on the crack orientation, K  is some mix of mode II and mode III stress intensity 
[Lawn, 1993] in the present application.  The brittle material strength and local heterogeneity 
would probably accommodate some mode I stress intensification, which would lessen as the 
confining pressure was increased.  Mode I stress intensification will be ignored here. 

When the same Griffith crack is subjected to an 
instantaneous application of the stress τ , the stress 
intensity factor is time dependent with the form 
shown in Figure (4).  At early times the stress 
intensity increases with time according to 
K ctτ≈ .  At late times K  equilibrates to the static 
value K dτ .  A critical stress intensity factor 

cK , at which inelastic growth of the fracture 
initiates, is identified as a property of the material.  
Fracture at the flaw initiates when K  achieves cK , 
either during quasistatic elevation of τ , or during 
the time-dependent amplification of K . 

Response of the same flaw within the mesoscopic stress field postulated for brittle solids is 
more complex.  Stress concentration in the neighborhood of the flaw is still determined by 
the neighboring shear stress τ .  However, τ  depends in turn on the far field stress τ , and on 
details of the material structure within some mesoscale correlation length a d .  When 
subjected to a near instantaneous stress load, such as passage of a shock wave, time-
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dependent equilibration of the stress intensity factor over both the flaw and the near-field 
structure within the correlation length a  must be accommodated.  We propose the more 
general time dependence of the stress intensity, 

 ( )nK ctτ= . (2) 

The power n  is expected to be somewhat less than one-half, reflecting the slower late-time 
equilibration over the mesoscale structure of dimension a .  Stress intensity equilibrates at 

nK aτ  and fracture initiates if a critical stress intensity cK  is exceeded.   

The dimensions of the stress intensity in the present 
development are not the same as resulting from the 
square root singularity of a Griffith flaw.  This more 
general stress intensity and failure criterion has 
similarities to the development of Mott (1947) and 
relates closely to Weibull characterization of the 
strength of solids [e.g., Weibull, 1951]. 

Plots of the stress intensity, which parallel the 
Griffith square root singularity of Figure (4), is 
shown in Figure (5).  The comparable early time 
amplification of the stress intensity, but reduced rate 
of intensification at later time, is consistent with the 
expected equilibrium behavior over the mesoscopic 
length scale, and is reflected by the model. 

Statistical Description of Mesoscopic Fracture  

Thus, fracture producing defects, and the stress activation of those defects, depends not only 
on the strength of the impressed stress field τ , but also on the character of an overlying  
microstructure-dependent mesoscopic stress field.  In the neighborhood of the defect, stress 
intensity is controlled by a correlation length scale a  and an intensification power n , which 
are both properties of the mesoscale field.  These parameters are expected to differ at each 
fracture site of concern.  The correlation length scales of the mesoscopic field at fracture sites 
will be assumed Poisson distributed, with probability density, 

 ( ) /1 o

o

a ap a e
a

−= , (3) 

and that the intensification power n  is nominally constant over the range of length scales. 

It remains to characterize onset of fracture at a site.  In constructing a statistical theory the 
chance of fracture will be determined by a power law hazard function in the stress intensity 
of the form, 

( )    ( )nK ct ct aτ= <

   ( )nK a ct aτ= ≥

1/2n=
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Figure 5: Generalized power-law stress intensity 
with time-dependent and equilibrium regions.
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 ( )
1m

c c

m Kk K
K K

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. (4) 

The probability of fracture onset at a site will then be determined by a statistical function of 
the Weibull extreme value type.  Onset of fracture will be statistically distributed about some 
critical stress intensity cK . 

Dynamic strength and the meso-kinetic features of the model come into play when stress 
loading rates exceed the rate at which the mesoscopic stress field can equilibrate over the 
correlation length scales.  It is readily shown that the loading strain rate at this transition is 
on the order of  1/ n

c o oK caε ρ +∼  where oρ  and c  are the material density and elastic wave 
speed, while oa  is the characteristic correlation length from Equation (3).  Shock wave, or 
Heaviside, loading to an elastic stress state would stimulate nonequilibrium response of the 
mesoscale stress field.  We will consider a shock wave crossing a material plane at time 0t =  
and develop a fracture activation hazard function as a function of time after passage of the 
shock wave.  For much of the analysis, time will be considered in units of 1c− , where c  is the 
elastic wave velocity, and use s ct=  as the time measure.  Of course s  has a dimension of 
length.  The temporal hazard function is calculated from, 

 ( ) ( )g s ds k K dK= . (5) 

or , 

 ( )( ) ( ) ( )g s k K s K s′= . (6) 

During the time-dependent period of stress intensification about a fracture-producing defect, 
from Equation (2), 

 ( ) nK s sτ= , (7) 

and, 

 ( ) 1nK s n sτ −′ = . (8) 

Equations (4) through (8) lead to, 

 ( ) 1
m

nm

c

g s mn s
K
τ −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. (9) 

Letting r mn=  and the length scale ( )1// n
o cKα τ=  yields for the temporal hazard function 

for fracture after passage of the shock wave, 
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 ( )
1

o o

r
r sg s
α α

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. (10) 

The Poisson distribution of correlation lengths associated with flaw sites implies the sites of 
size a s<  will have achieve maximum stress intensification and, if not already activated, 
will no longer provide a site for fracture activation, and is removed from the population.  
Consequently, the hazard function in Equation (10) is modified by the exponential Poisson 
expression to provide, 

 ( )
1

/ o

r

o o

s ar sh s e
α α

−

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (11) 

If the number of fracture sites in a volume element dV  is 3/o oN dV dV λ= , where oλ  is the 
mean spacing, then the statistical rate of fracture activation per unit time, per unit volume, is, 

 ( ) 3

1
/1 o

o o o

r
s ar sn s e

λ α α

−
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. (12) 

If the body of interest is an area or a line then the factor in Equation (12) is reduced to 21/ oλ , 
or 1/ oλ , to reflect the reduced dimensionality.  Although it is not necessary, it seems 
reasonable that the nominal correlation length oa  and average fracture site spacing oλ  would 
be comparable, and in the subsequent analysis o oaλ =  is assumed. 

Fracture Growth and Interaction  

When fracture activate at appropriate sites the cracks rapidly accelerate to some 
characteristic velocity and propagate until arrested by some impediment to further crack 
propagation.  In concert, the stress field driving the fracture is relieved as the crack 
propagates.  This facet of the fracture process behind a shock wave has its own set of 
complicating factors.  We will keep the modeling of fracture growth sensibly simple.  Once 
activated crack acceleration to terminal velocity is governed by the same inertial properties 
that determine dynamic fracture activation [Freund, 1990].  Thus, it is sensible to fold the 
acceleration growth into the initial activation model and simply assume instantaneous 
acceleration to a terminal velocity.  Both theoretical efforts and experimental observation 
show that terminal velocity for brittle cracks is some appreciable fraction of the elastic wave 
speed (proportional to the Rayleigh or shear elastic velocity for example).  We will simply 
assume a constant crack growth velocity equal to gc .  Finally, if a fracture activates at an 
earlier normalized time ctσ ′= and propagates to a later time s ct= , than a volume 
surrounding the crack of magnitude, 
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 ( ) ( )334
3

s sπυ σ η σ− = − , (13) 

 is assumed stress relieved, where /gc cη = is the ratio of the crack growth velocity and the 
sound speed.  Again, if the interest is fracture on an area, or a line, the power and coefficient 
in Equation (13) is modified accordingly. 

Analytic Framework for the Meso-Kinetic Failure Model  

The essential physics that has been proposed to underlie the failure wave phenomena in 
brittle solids has now been addressed.  This physics includes a mesoscopic stress field which 
overlays the continuum stress field impressed on the body in the shock compression process.  
Under rapid dynamic loading, such as in shock compression, this mesoscopic stress field 
does not instantaneously equilibrate, but does so over time as correlation length scales in the 
field equilibrated at elastic wave speeds.  Fractures activate at sites of weakness as stress 
intensities increase to critical levels over time.  Activated brittle fractures propagate at crack 
growth velocities and relieve the driving deviator stress field. 

The objective now will be the development of an analytic framework based on this physics to 
describe response of the brittle material during fracture failure following a compressive 
shock wave.  This will be accomplished by first identifying a parameter ( )D s , which is the 
volume fraction of the solid over which shear stress has been relieved by the time-dependent 
fracture process at time s .  It will be appropriate to identify ( )xD s  as a fracture damage 
parameter.  The integral, 

 ( ) ( ) ( )
0

s

xD s s n dυ σ σ σ= −∫ , (14) 

provides the super position of the stress relieved volume from Equation (13) of all fractures 
activated at earlier time σ  from Equation (12) integrated from the initial time zero up to the 
present time s .  ( )xD s  is identified as the extended damage, and is not the desired damage 
parameter since the integral is in error by not accounting for further activation of fractures in 
previously stress relieved regions (exclusion), nor does it account for the overlap of growing 
stress release regions (impingement) [Grady, 1981].  

These features are accounted for through the statistical relation [Grady, 1981], 

 1 xDD e−= − . (15) 

relating the extended damage parameter xD  to the damage parameter D .  The damage D  
and the extended damage xD  are nearly equal at early time as they should be when fracture 
damage is still dilute.  At late time D  approaches unity whereas xD  is unbounded. 
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Replacing Equation (14) with the physical models for fracture activation and growth of stress 
release from Equations (12) and (13) yields, 

 ( )
1

3 /3
3

0

4( )
3

o

rs
a

x
o o o

rD s s e d
a

σπ ση σ σ
α α

−

−⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫ . (16) 

Introducing the change of variables / ox σ α=  and / oy s α=  results in, 

 ( )33 3 1

0

4
3

y
r

x
xD r y x x e dxγπ η γ − −= −∫ , (17) 

where /o oaγ α=  is the dimensionless ratio of the two characteristic length parameters.  The 
further transformation /z x y=  reduces the equation to the convenient form, 

 ( )
13

3

0

3 14 ( ) 1
3x

r r yz
r

rD y z z e dzγπ η γ
γ

+ − −= −∫ , (18) 

Lastly, returning to the time dependence through / oy s aγ = ,  

 ( )
13

3 )

0

( /3 14( ) ( / ) 1
3

o
x o

s a zr r
r

rD s s a z z e dzπ η
γ

−+ −= −∫ , (19) 

with ( )D s provided by Equation (15). 

The continuum shear stress ( )sτ  is then expected to be reduced for its initial value τ  in 
response to the time-dependent  growth of the damage D , either to zero, or to some reduced 
residual stress.  A reasonable expression of this relaxation of the shear stress is, 

 ( ) (1 ) rs D Dτ τ τ= − + . (20) 

The statistical number of activated fractures that participate in the failure process can now be 
calculated.  The fracture number ( )N s  at time s  is provided by the activation rate from 
Equation (12), but reduced by the current volume fraction of stress relieved material, 

 ( ) ( )
0 0

( )( ) (1 ( )) x

s s
DN s D n d e n dσσ σ σ σ σ−= − =∫ ∫ . (21) 

Equation (21) is not readily solvable because of the complexity of Equation (19) for xD . The 
fracture number is easily estimated in most cases, however, as will be shown later.  
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Application of the Meso-Kinetic Model  

To explore the implications of the present meso-kinetic model, properties for soda-lime glass 
necessary for the model are developed.  These properties are acquired through experience 
with the model, and are preliminary.  They are sufficient, however, in reproducing some of 
the features observed in studies of failure waves in glass, and they provide a means for 
uncovering the behavior of the model under the dynamic mechanical stimulus of concern. 

Table 1 
Meso-kinetic Model Properties for Soda-Lime Glass 

Density     32500 kg/moρ =  
Sound Speed      = 5000 m/sc  
Fracture Speed    = 2000 m/sgc  
Critical Stress Intensity   1/3= 100 MPa mcK  
Intensification Modulus   = 1/3n  
Mesoscale Correlation Length  = 0.25 mmoa  
Mesoscale Distribution Modulus  = 15m  
 

Material and model parameters for soda-lime glass are provided in Table 1.  An elastic sound 
speed of 5000 m/s is neither the longitudinal nor the shear wave speed, but rather a nominal 
value in between.  At this juncture, the more appropriate wave speed is not known nor is it 
critical.  A fracture speed of 2000 m/s is a reasonable guess at some value less than the sound 
speed.  Note that the critical stress intensity does not have dimensions of fracture toughness.  
It is consistent with the present model generalization, where stress intensification is a 
consequence of both the defect structure and the neighboring mesoscopic correlation field.  
An intensification modulus of 1/ 3n =  is a reasonable guess and determines the dimensions 
of cK .  A mesoscale correlation length of 0.25 mm was determined from several iterations of 
the model, as was the distribution modulus of 15.m =  

The equations have been specialized to apply to a cross-section 10 mm in width and 1 mm in 
thickness, and providing the plots shown in Figure (6).  Shock amplitude increases from left 
to right and is identified by the resolved shear stress behind the shock wave in each plot.  
Time dependence of the fracture number activated at each shock amplitude is shown in the 
three upper plots.  The corresponding position and time of activation for one statistical 
complexion at each shock amplitude is illustrated in the lower plots.  Damage growth occurs 
later in time as fracture growth and interaction proceeds.  Reduction of the driving shear 
stress would correlate with the growth of fracture damage. 

Features of the Statistical Hazard Function  

Equation (11) provides the statistical probability (hazard) function governing the likelihood 
that a potential fracture site will transition to an active fracture under the conditions imposed.  
This hazard function has unique features that are explored here in further detail.  By letting 
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/ oS s a=  and /o oaγ α=  as before, Equation (11) transforms to a dimensionless hazard 
function. 
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Figure 6:  Representative application of the fracture kinetics model for soda-lime glass.  
Illustrates the statistical time dependent fracture activation and damage growth following 
passage of a shock wave.  Increasing shock intensity is noted by the shear stress amplitude.
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Figure 6:  Representative application of the fracture kinetics model for soda-lime glass.  
Illustrates the statistical time dependent fracture activation and damage growth following 
passage of a shock wave.  Increasing shock intensity is noted by the shear stress amplitude.  

 

The hazard function, 

 1( ) r S
r

rH S S e
γ

− −=  (22) 

is the product of two terms.  The first power function determines the increasing time-
dependent chance that the defect will achieve critical stress intensification and activate 
fracture.  The second exponential term determines the chance that the site will achieve stress 
equilibrium and drop out of the population of potential fracture flaws. 

The hazard function is governed by the two dimensionless parameters r  and γ .  The 
parameter r  is the product r mn= .  The parameter m  determines the spread in critical stress 
intensity at which a defect activates.  As m  is increased the spread narrows and trends 
toward conditions where all defects activate at the same critical stress intensity.  The 
parameter n  determines the time-dependent rate of stress intensification and it is argued that 
the combined intensification effect of both the defect and the neighboring correlation field is 
to reduce n  to values less than the Griffith singularity of 1/ 2n = .  Since ( ) ~ nK s s  the rate 
of growth is 1~ nK ns − , or ~K n  as s  approaches unity.  The effect of decreasing n  is to 
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Figure 7:  Construction of the fracture activation hazard function 
including power law activation and exponential depletion.
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Figure 7:  Construction of the fracture activation hazard function 
including power law activation and exponential depletion.

increase the spread in fracture activation.  For the parameters selected for soda-lime glass in 
Table 1 15m =  and 1/ 3n =  leads to 5r = . 

The parameter γ  is the ratio of the two length scales oα  and oa .  The length scale oa  is a 
material property characterizing the nominal long-range correlation within the mesoscopic 
stress field.  The length scale 1/( / ) n

o cKα τ= , on the other hand, is a function of the global 
stress field and determines the length scale above which the stress τ  is sufficient to cause 
fracture activation.   

Together r  and γ , through the function ( )H S , determine the character of the fracture 
activation process.  For a large collection of fracture sites, ( )H S  provides the statistical rate 
of fracture activation.  For a single site the cumulative probability of fracture activation is 
provided by, 

 0

( )

( ) 1

S

H d

P S e
σ σ−∫

= − . (23) 

The exponent, 

 1

0

S
r

r

r e dσσ σ
γ

− −∫ , (24) 

includes the complementary incomplete Euler gamma function ( , )c r SΓ  and Equation (23) 
can be written, 

 
( , )

( ) 1
cr

r r S
P S e γ

− Γ

= − . (25) 

In the limit of large S  Equation (25) reduces to, 

 
!( )

( ) ( ) 1 1
r r

r rr
P P e eγ γγ

− Γ −

∞∞ = = − = − ’ (26) 

where ( )rΓ  is the Euler gamma function and the final 
expression with the factorial term applies when r  is an 
integer.  ( )P γ∞  provides the probability that a single 
site will activate under the specified conditions. 

The character of the fracture activation hazard 
function is illustrated in Figure (7).  Properties from 
Table 1 are used, and a stress of = 0.9 GPaτ  is 
assumed, providing a value of 5.5γ .  The plot 
shows both the power law activation and exponential 
depletion terms separately, in addition to the complete 
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hazard function and the corresponding cumulative probability fracture function.  For the 
selected stress amplitude, a fracture site has an approximately 2% probability of fracture 
( (5.5) 0.023P∞ ) and will occur within a time duration of about 1 10S< < . 

As the driving stress amplitude is raised (decreasing γ ) the likelihood that a potential 
fracture site will activate increases and rapidly approach unity.  This transition to unit 
cumulative probability is readily quantified by equating the relevant argument in the 
exponent of Equation (26) to one, or, 

 ! 1r

r
γ

= . (27) 

The transition curve in the hazard-function parameter space identifying the domain in which 
fracture activation is sparse is identified in the left plot of Figure (8).  The right plot shows an 
alternative representation of the fractional activation probability for selected values of r . 
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Figure 8:  Parameter plots of fracture activation hazard function identifying domain of 
sparse or fractional fracture activation.
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Figure 8:  Parameter plots of fracture activation hazard function identifying domain of 
sparse or fractional fracture activation.  

Model Featured Requiring Further Development 

The physics emphasized in the present fracture model is the time delay necessary to the 
equilibration of elastic stress throughout the heterogeneous mesostructure following passage 
of a rapidly rising shock wave.  The statistical model within which this physics has been 
incorporated readily predicts the delayed fracture (the failure wave) observed in the shock-
induced failure of brittle materials.  The model predicts a dependence of the failure delay on 
the shock amplitude.  The model does not predict a separate and different velocity for the 
failure wave as reported in several of the experimental studies; although this observation is 
still being debated.  In any case this lack of the model may be a consequence of the overly 
simplistic damage growth model.  A growth model that is dependent not only on the driving 
stress but also on the current damage in the neighborhood of failure may introduce a distinct 
failure wave velocity.  These additional features of the model are being pursued. 
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Stress intensification with power-law dependence has the appearance of being a step 
backwards.  Square root singularity associated with Griffith flaws has become common lore.  
Nonetheless, the more complex characterization may be necessary, although this must be 
examined in more detail. 

Relationship of Physics Based Model to Other Studies 
Some relationship has been noted of the present model with recent research at Rutgers 
University [Niesz, 2005], and computational model development and validation [Holmquist 
and Johnson, 2006].  Some observations on these connections are documented in this 
subsection. 

Defect Studies in Armor Ceramics  

Efforts are underway Rutgers University to assess the nature of defects in armor quality 
silicon carbide ceramic [Niesz, 2005].  In the framework of the present meso-kinetic model 
of dynamic failure in brittle solids, the strength and length scale of a failure-producing defect 
is determined by its local mechanical stress-strain response.  Consequently, the effective 
length scale of a defect identified through this mechanical characterization is not necessarily 
expected to correspond to a geometric defect length scale determined through some material 
micro-imaged technique.  Never-the-less, some correlation of defect geometric size and 
model meso-kinetic length scale would be expected.  Efforts at Rutgers University are 
determining, through field emission scanning electron microscopy, populations and 
geometric length scales associated with carbon defects in silicon carbide ceramic.  Although 
not directly pertaining to the physics-based gamma distribution found to describe dynamics 
of the failure process in the present meso-kinetic model, use of an inverse gamma function to 
describe the geometric population is interesting.  Defects tend to peak in the 20 to 30 µm 
range.  Of particular importance, however, is the population of larger defects in the power 
law tail of the distribution and the fact that this population differs in the two different 
materials that were examined.   

The JHB Model and Relationships to the Present Theory of Strength and Failure 

The word “fail” as used in the terms “material failure”, or “failed material”, or “strength of 
failed material” lies at the heart of the respective modeling efforts.  The word, and the terms 
in which it is used, commonly do not have the same meaning throughout the mechanics and 
physics community concerned with the strength of solids under shock and high-rate loading.  
This disparity can be disconcerting.  Hence, care in the various definitions is warranted. 

Under sufficiently large amplitude uniaxial strain shock compression all materials, including 
the high strength ceramics of current interest, achieve an elastic limit above which 
irreversible inelastic deformation proceeds.  Although this elastic limit (the Hugoniot elastic 
limit, or HEL) is sometimes referred to as failure under shock compression; this is precisely 
not the definition in the JHB model development [Holmquist and Johnson, 2006].  It is 



Analysis of Shock and High-Rate Data for Ceramics:  Strength and Failure of Brittle Solids 

ARA Project No. 17168 22

perhaps more appropriate, in analogy with the behavior of metals under shock compression, 
to identify this elastic limit as yielding even though the underlying mechanisms may, or may 
not, be the same.  Yielding of ceramics under strong shock compression is the onset of 
inelastic deformation that limits the subsequent increase in the shear (or deviator) stress of 
the material.  If the shear stress under subsequent deformation remains either sensibly 
constant, or increases as a result of continued deformation hardening, then the ceramic is 
regarded as having yielded under shock compression but not failed.  Failure of the ceramic is 
considered to occur if the deformation processes subsequent to yield leads to a marked 
reduction of the shear stress and a softening of the strength of the material.  Strength is the 
maximum shear stress the material can support under the stated loading conditions.  Strength 
and shear stress are quantitatively the same when the inelastic deformation is in process.   

Failure and the concomitant reduction in the shear stress and material strength in ceramics in 
the shock event are assumed a consequence of a process of fine-scale microfracture.  The 
fracture occurs over a finite inelastic strain and reduces the strength of the ceramic from that 
of the intact ceramic (either the initial yield strength or the subsequent strength at onset of 
failure) to that of a fine-grained powder of the ceramic at the requisite confining pressure and 
strain rate.  Because of the fine particle size the process has been referred to, perhaps 
inappropriately, as one of comminution in analogy with the mechanical processes used to 
reduce ceramic materials to powders and grits of the same material.  Fragmentation in the 
dynamic fragmentation event is addressed in a later section. 

Failure in the shock event through dynamic fracture is a reasonable assumption.  Other 
methods of testing the strength of high-strength ceramics reveal catastrophic fracture to be 
the dominant failure mechanism.  It is recognized, however, that the shock compression 
event may be unique.  Failure through mechanisms other than dynamic microfracture are 
possible.  A leading alternative mechanism that has been proposed for the failure of ceramics 
under shock compression is that of localized thermoplastic deformation.  Deformation-
induced adiabatic heating on an inhomogeneous network of thin shearing planes can lead to 
shear stress reduction and accommodation of the inelastic deformation. 

How this thermoplastic failure mechanism would modify the current constitutive model for 
ceramics has not yet been explored.  Certain differences are evident, however.  For example, 
bulking is a natural consequence of the dynamic fracture failure process and the transfer of 
elastic shear strain energy to energy of volumetric strain is a necessary step in the modeling.  
The same elastic shear strain energy would transition to localized thermoplastic heating 
under a mechanism of failure through inhomogeneous thermoplastic shear negating the need 
for a bulking term in the constitutive model. 

It is reasonable to suspect that a specific ceramic could exhibit failure through both 
microfracture and localized thermoplasticity; perhaps transitioning from the former to the 
latter under increasing shock intensity as both rates of deformation and confining pressure 
become increasingly more intense.  
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IV Impact Breach of Glass and Ceramic Plate 
The breach of a glass or ceramic plate by the impact of a comparable dimension chunky 
projectile provides a particularly challenging problem to computational solution methods.  
The reasons for this are several:  Experimental results indicate that properties of the plate 
material governing the strength and the resistance to breach are nonlocal and time dependent.  
This behavior provides an immediate handicap to computational solutions based on local, 
time independent strength and failure models.  Further, the impact conditions at onset of 
breach are statistical providing additional complexity to a deterministic calculation of breach.   

In the present section an analytic physics-based model of the onset of breach of plates of 
brittle material is pursued.  The model has application, for example, to the high-speed impact 
of solid fragments on transparent shielding such as high strength glass or possibly brittle 
polymeric material such as Plexiglas polymethyl (methacrylate) or Lexan (polycarbonate).  
The model would be equally applicable to fragment or bullet impact on barriers of ceramic 
plate.  Emphasis of the model is at impact conditions near the threshold of breach of the 
barrier. 

This effort was initiated in an earlier report [Grady, 2005].  The present study modifies and 
extends the earlier development.  Additionally, recent data on the impact of steel spheres 
with plates of float glass [Sun et al., 2006] nicely delineates the breach threshold.  These 
data, when joined with the analytic model, clearly emphasis the time-dependent strength and 
failure features that must be captured with a successful computational model.   

The purposes of the present analytic modeling effort are several.  First, as just stated, one 
purpose is to clearly illustrate through the analytic model the time-dependent properties of 
brittle material that must be captured in a computational model of the breach phenomena.  A 
time-dependent Tuler-Butcher failure criterion [Tuler and Butcher, 1968] is joined with the 
analytic model to provide a breech criterion for projectile impact on glass plate.  Further, the 
analytic model reveals geometric and material scaling rules appropriate to the breach event 
and identifies further constraints to a computational solution.  Understanding of the scaling 
characteristics of the impact event also enhances understanding of the underlying terminal 
ballistics physics.  Lastly, analytic solutions can lead to useful engineering models that have 
had, and will continue to have, practical application. 

The Ballistic Model 
The ballistic event and the details of the physical model are illustrated in Figure (9).  A 
chunky projectile (fragment) of characteristic size a (a sphere is a reasonable idealization but 
not necessary) is incident on a plate of thickness b with normal velocity V.  The velocity 
vector need not be normal to the barrier plate although the model is not appropriate for large 
angles of obliquity.   



Analysis of Shock and High-Rate Data for Ceramics:  Strength and Failure of Brittle Solids 

ARA Project No. 17168 24

ct

u(t)

V

a

b

Radial Distance

Transverse Velocity 
or Shear Stress

Elastic 
Shock
Wave 

3 /6m aπρ=

2( ) ( )M t b ctπρ=

Elastic 
Shock
Wave 
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Transfer of momentum and energy occurs through a radial elastic transverse shock wave.  
Elastic stress waves within the projectile and plate mass encompassed by the shock wave are 
ignored and the material is all assume to be at the same momentum-averaged axial 
velocity ( )u t .   The projectile deceleration is calculated through a momentum balance 
between the projectile and the mass of the plate encompassed by the outwardly directed 
shock wave. The mass of the plate increases with time after impact according to 

2( ) ( )M t b ctπρ=  where M is the mass of the region, ρ is the plate density, b  is the plate 
thickness and c is the elastic shear wave velocity of the plate material.  If m is the mass of the 
projectile then momentum conservation requires, 

 ( ) ( ) 0d m M u m M du udM+ = + + = , (28) 

where ( )u t  is the time dependent velocity of the projectile and plate mass ( )M t  as illustrated 
in Figure (9).  Equation (28) integrates to, 
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1 /

Vu
M m

=
+

. (29) 

By introducing the plate and projectile masses, 

 2 3( )  ,               / 6 ,M b ct m aπρ πρ= =  (30) 

Equation (29) is rewritten in the explicit time dependent form, 

 21 ( / )
Vu
t τ

=
+

. (31) 

The time constant, 
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ρτ
πρ ρ

= = , (32) 

is identified as a characteristic load transfer time that is dependent on both the geometry and 
the properties of the plate and projectile material. 

The decelerating force on the projectile is calculated from /F mdu dt= −  and using ( )u t  
from Equation (31), 

 2 2
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tF F
t
τ
τ

=
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, (33) 

with, 
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3 22 2ˆ
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mF V a c b Vπ ρρ
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The time dependence of the decelerating force is shown in Figure (10).  A maximum force is 
achieved at / 1/ 3t τ =  with amplitude ˆ/ 27 /16 1/ 3F F = .   

The opposing shear stress ( )T t  in the glass plate is calculated from the shock jump condition 
across the elastic shock wave, 

 ( ) ( )T t cu tρ= . (35) 

From Equation (31) this relation for the shear stress becomes, 

 2

1ˆ( )
1 ( / )

T t T
t τ

=
+

, (36) 
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where, 

 T̂ cVρ= . (37) 

The time dependence of the opposing shear stress in the plate is also shown in Figure (10).  
The latter calculation of the shear stress differs from the previous years approach and is 
regarded as an improvement in the model.   

An interesting alternative calculation of the shear stress follows from energy considerations.  
Since momentum is conserved in the model kinetic energy is not.  The difference in kinetic 
energy of the plate and projectile at any time can be ascribed to strain energy in the plate.  
The elastic expression for strain energy results in the same measure of shear stress provided 
by the shock jump in Equation (36). 
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the responding portion of the barrier plate.  Ordinates for F(t) are on the left 
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Several assumptions are tacit in the present model.  In the model the several energy transfer 
processes that occur in the motions and deformations leading to arrest of the projectile or 
failure of the barrier plate are decoupled.  Kinetic energy of the incident projectile is assumed 
to transfer to kinetic energy of the impeding plate, and that this kinetic energy in turn 
converts to elastic strain energy of the plate.  The latter strain energy in not explicitly 
calculated or used in the analysis, however, and is only inferred from the shear stress state.  
Rigidity of the plate mass encompassed by the shock wave as implied by the uniform 
velocity ( )u t  is certainly not correct.  Marked spatial variations in this velocity as the elastic 
wave propagates outward from the point of impact would occur.  The momentum averaged 
velocity ( )u t , and corresponding shear stress, arising from the present model adequately 
characterizes the dynamics necessary for the prediction of failure in the present application.  
Failure occurs when and if some criterion resulting from this dynamics is exceeded during 
the process.  This assumption is reasonable as we are here solely concerned with threshold 
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conditions and are using the model to determine sensible functional forms for the limiting 
velocity at failure and the dependence on parameters of the problem.  

Failure Criterion 
A failure criterion appropriate to the impact event will now be developed.  The choice here 
will be the Tuler-Butcher failure criterion [Tuler and Butcher, 1968] based on the time 
dependent shear stress caused by the impact and stated in the form, 

 
0

( )( )
nt

n n
T tI t dt K

cρ
⎛ ⎞

= ≤⎜ ⎟
⎝ ⎠
∫ . (38) 

Survival of the barrier is assured while the Tuler-Butcher integral ( )nI t  remains less than the 
material constant nK .  The barrier is breached when nK  is exceeded.  Normalizing the stress 
by cρ  is not necessary but is done here to simplify the expressions.  In this form the integral 
has dimensions of velocity to the power n  
multiplied by time.   

 This criterion is found to be quite general, 
and actually covers several specific criteria 
of particular interest.  The parameter n in 
the Tuler-Butcher criterion can range from 
about one to quite large, and the range 
1 n≤ < ∞  is considered.  Within this range a 
failure criterion governed by a critical 
impulse, a critical energy or a critical stress 
is spanned.  The present Tuler-Butcher 
failure criterion coupled with the present 
model will also bring to light scale 
dependent issues observed in experiments as 
well as some of the complicating issues for 
computational simulation of the brittle 
failure on impact. 

Introducing the expression for ( )T t  from Equation (36), the criterion can be written, 
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The barrier is breached according to the present Tuler-Butcher criterion when the time 
dependent integral on the left exceeds nK .  Let the function ( / ) ( / ) / ( )f t I t Iτ τ= ∞ .  Time 
dependence of the integral is illustrated in Figure (11) for n = 1, 2 and 10.  Growth of the 
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Figure 11:  Time dependence of the Tuler-Butcher integral for 
breaching a glass barrier for selected values of n.
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Tuler-Butcher integral is slowest for n = 1 (impulse criterion), more prompt for n = 2 (energy 
criterion) and most rapid for n = 10 (approaching a constant stress criterion). 

The barrier is not breached if, as time becomes large corresponding to ( / ) 1f t τ → , 

 n
n nV Kβ τ ≤ , (40) 

Where, 
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is the integral expression in Equation (39) in the limit of large time.  The integral in the 
Tuler-Butcher expression is analytic and equal to, 

 atan( / )t τ , (42) 

for 1n = , 
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for 2n = , 

and successively more complex functions of the inverse tangent for higher values of n .  For 
Equation (41) these relations provide 1 / 2β π=  and 2 / 4β π= . 

The characteristic load-transfer time constant 
τ  from Equation (32) is written,  

            1
6

a a a R
c b c

ρτ
ρ

= = .               (44) 

The parameter R  is dimensionless and is 
constant when replica scaling is applied to the 
system (the projectile dimension a  and the 
barrier thickness b  are proportionally 
changed). Equation (40) is plotted as an 
equality for the selected values of n in Figure 
(12) with / 1n nK β = .  The time constant τ  
scales directly with the size a  of the projectile, 
and hence, the system size under replica 
scaling.   
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Increasing values on the abscissa, maintaining R constant, implies increasingly larger replica 
scaled projectile-barrier systems.  The threshold velocity for onset of breach decreases with 
the system size for each of the three cases shown in Figure (12).  Scale dependence is most 
pronounced for the Tuler-Butcher impulse criterion ( 1n = ), less so for the energy criterion 
( 2n = ), and approaches independence of system scale for large n (approaching a failure 
stress criterion). 

Experiments on Impact Breach of Float Glass 
Recent studies in which steel ball bearings impact plates of soda-lime glass [Sun, et al., 
2006] provide appropriate data for exploring the model developed in the present impact 
breach study.  In the tests steel spheres are accelerated to velocities ranging over about 15 to 
25 m/s and caused to undergo normal impact on glass plates.  Steel spheres were either 1/4 
in. (6.350 mm) or 3/8 in. (9.525 mm) diameter.  Barrier plates were either 1.6 mm or 2.3 mm 
in thickness.  The reported criterion for breach of the glass plates was that they were either 
broken or unbroken. 

The data of Sun et. al. (2006) are replotted from their report in Figure (13).  The ordinate is 
the impact velocity.  On the abscissa is the characteristic load transfer time provided by 
Equation (32) or Equation (44).  A density of 7840 kg/m3 is used for the steel.  A density of 
2530 kg/m3 and shear wave speed of 3.47 km/s are used for the soda-lime glass.  Solid 
symbols identify the broken (breached) glass plates.  Open symbols are for the unbroken 
plates.  The breach and no-breach symbols at each impact condition are offset slightly in the 
figure for easier visualization.  

Tuler-Butcher failure criteria for n = 1, 2, 
and 3 are independently compared with the 
data.  Of the three the data appear best 
described with an n = 2, or an energy-
based, Tuler-Butcher criterion although the 
significant scatter introduces some 
uncertainty to this observation.  Particularly 
important is the lack of replica scaling of 
the breach strength data as shown by the 
two intermediate sets of data provided in 
Figure (13).   

The same data are replotted in Figure (14) 
against the replica scale parameter R  
showing the near replica scaling of the test 
with 6.35 mm steel spheres on 1.6 mm 
glass plates and the 9.35 mm spheres on 2.3 
mm plates.   
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Figure 13:  Breach data for steel sphere on glass plate experiments 
[Sun, et al., 2006].  Comparison with selected Tuler-Butcher criteria.
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Figure 13:  Breach data for steel sphere on glass plate experiments 
[Sun, et al., 2006].  Comparison with selected Tuler-Butcher criteria.
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The replica scale parameter for the two 
differ by less than 6% whereas system 
size differs by about 50%.  Note also that 
the smaller scale test exhibits statistically 
higher breach strength.   

 

 

 

 

 

 

 

 

Failure Toughness of Glass Plate 
Working with the impact breach data of Sun et al. (2006) and the Tuler-Butcher failure 
criterion, the data support an energy-based or 2n =  Tuler-Butcher failure criterion.  
Although no theoretical work has demonstrated that this energy-based response need be, 
there is a history of evidence that support dynamic failure of brittle solids described by some 
form of an energy criterion. 

For the present data on soda-lime glass an energy-based Tuler-Butcher criterion best 
describes the breach data as illustrated in Figure (13).  The value of 2K  determined from the 
fit to the data is -3 2

2 1.26 x 10  m sK = .  Failure energy is calculated through, 

 2f cKρΓ = . (45) 

Using the density ρ  and the shear wave speed c  for soda-lime glass in the previous relation, 
a value of 211.0 MJ/mfΓ =  is obtained.  A property fK will be identified through the 
relation, 

 22f fK cρ= Γ , (46) 

if for no other reason than numerical comparison with the known fracture toughness of glass.  
The property fK  will be called the failure toughness of the glass plate.  The Tuler-Butcher 
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Figure 14:  Breach data for steel sphere on glass plate experiments 
[Sun, et al., 2006].  Abcissa is the replica scale parameter and is 
proportional to the ratio of the sphere diameter to plate thickness. 
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toughness may also be an appropriate naming. Carrying through the calculation yields a 
value of 1/2 25.9 MPa mfK = .  Note that the failure toughness is markedly larger than the 

nominal fracture toughness for soda-lime glass which is of order 1/20.5 1.0 MPa mcK ≈ − . 

The present failure toughness is not an intrinsic property of the glass but may provide a 
sensible property characteristic of impact failure of the glass plate.  This strength property 
depends not only on the intrinsic strength of the glass but also on the flaw structure of the 
surface and interior of the plate.  Further discussion on this issue will follow the next 
subsection addressing fracture damage resulting from breach of the glass plate. 

Post-Failure Fracture Damage 
Failure of the glass plate upon impact based on the present model is achieved when the 
Tuler-Butcher integral exceeds the critical value.  From the data of Sun et al. (2006), failure 
of the present soda-lime glass plate is best described by a Tuler-Butcher energy criterion 
( 2n = ) with a critical value of 3 2

2 1.26 10  m sK −= × . 

Post-failure fracture damage can be estimated with an extension of the present model.  An 
estimate is provided for the extent and the density of cracking resulting from the local impact 
as well as the residual velocity of the impacting projectile and leading fragment debris.  The 
model may have some validity to perhaps a few times the velocity at onset of failure.  It is 
not intended as a predictive engineering model but rather a study with the intent of 
enlightening the physics of the plate impact failure and fragmentation process.  With some 
additional effort, however, a fairly credible engineering model could perhaps emerge from 
the analysis. 

In developing the model we will work with 
the 3/8” steel sphere impact on 2.3 mm glass 
plates [Sun et al. (2006) ] for which the 
failure threshold velocity is approximately 20 
m/s as is readily seen from Figure (13) or 
calculated from the Tuler-Butcher criterion 
with the critical 3 2

2 1.26 10  m sK −= ×  derived 
previously.  The characteristic time constant 
from Equation (32) for this problem 
parameters is 64 10  sτ −= × .  The Tuler-
Butcher energy integral from Equations (39) 
or (43) is plotted in Figure (15) for selected 
velocities in excess of the failure threshold 
velocity.  The time to failure ft  is calculated 
for each case in units of τ  and is ft = 1.41, 
0.623, 0.382 and 0.202 times the constant τ  
for impact velocities of V = 21, 25, 30 and 40 
m/s, respectively. 
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Figure 15:  Tuler-Butcher energy integrals for impact velocities 
in excess of the threshold failure velocity.
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Post-failure fracture damage is estimated by calculating the characteristic fracture spacing at 
a radius r  from the point of impact.  An estimate of the circumferential fracture spacing is 
provided through a balance of the resisting fracture energy Γ and the driving expansion 
kinetic energy.  This analysis provides the following relation for the number of fractures 
generated by the impact that survives at a radius r , 

 ( )
2/32 21/33

2

1( ) 2 1 /
48 f g
VN r r t r cρπ

τ

−
⎛ ⎞= + +⎜ ⎟Γ ⎝ ⎠

.

 (47) 

Fracture number from Equation (47) for the 
selected impact velocities is shown in 
Figure (16).  A fracture resistance energy of 

216.4 J/mΓ =  is used in Equation (47) based 
on a fracture toughness for glass of 1 MPa 
m1/2 and the expression for 2 2/ 2cK cρΓ = .  
The elastic shear wave speed for glass is 
assumed for the fracture growth velocity gc  
in Equation (47).  The increased fracture 
intensity with increasing post-failure impact 
velocity is sensible but no data have been 
found to test the predicted trend.  It is worth 
noting that at large range the fracture 
intensity dependence on range becomes 
power law (fractal) with an ( ) 1/N r r∼  
dependence.   

A pictorial representation of the same fracture data is illustrated in Figure (17).  Fractures are 
distributed at random on the circumference through a Voronoi statistic process [e.g., Grady, 
2006]. 

The impact fracture damage relation in Equation (47) is developed through the following 
arguments.  At any radius r  the average circumferential spacing L  of fractures is determined 
from the energy based fragment size relation [Grady, 1988], 

 ( )1/3248 /L ρε= Γ , (48) 

yielding the fracture number at the radius r , 

 
1/32

( ) 2 / 2
48

N r r L r ρεπ π
⎛ ⎞

= = ⎜ ⎟Γ⎝ ⎠
. (49) 
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Figure 16:  Fracture number dependence on the radial distance 
from impact point for steel sphere impact on glass plate.
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Figure 17:  Post-impact fracture damage to glass plate.  Velocities are successively 
higher than the critical breach velocity of 20 m/s.
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Figure 17:  Post-impact fracture damage to glass plate.  Velocities are successively 
higher than the critical breach velocity of 20 m/s.  

The circumferential strain rate at r  is provided by, 

 2

( ) 1
1 ( / )

u r V
r r t

ε
τ

= =
+

, (50) 

where the velocity ( )u r  from Equation (31) is introduced.  Equations (49) and (50) combine 
to give, 

 
( )

1/3
2

1/33
22

( ) 2
48 1 ( / )

V rN r r
t

ρπ
τ

⎛ ⎞
⎜ ⎟=
⎜ ⎟Γ +⎝ ⎠

. (51) 

A constant fracture growth velocity gc  is assumed such that ( )g fr c t t= −  provides the radius 
of the fracture system at time t  and is used to eliminate time from Equation (51) providing 
the fracture damage relation in Equation (47). 
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Residual Projectile Velocity 
The post-failure residual velocity of the projectile (and the leading fragment debris if a more 
sophisticated fragmentation model was employed) can be calculated from the model.  As 
noted previously, the time ft  at which the Tuler-Butcher failure criterion is exceeded and 
failure (breach) of the plate achieved can be calculated for any impact velocity.  Time to 
failure for selected impact velocities are shown in Figure (15).  The velocity of the projectile 
at time ft , and hence the residual projectile velocity is provided by, 

 21 ( / )f
f

Vu
t τ

=
+

. (52) 

A residual projectile velocity plot compared 
with the impact projectile velocity provided 
by the model is shown in Figure (18).  The 
selected impact velocity amplitude, and the 
projectile and plate dimensions, are the 
same as for the fracture damage calculation. 
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Figure 18:  Residual velocity of projectile and leading fragment 
debris at selected velocities.
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V Fragmentation of Ceramics 
Failure of ceramic in the ballistic event involves pervasive brittle fracture and fragmentation 
of the high-strength material.  Ballistic resistance of ceramic involves the strength up to 
failure, and the continued strength through and beyond the fracture and fragmentation stages 
of the response.  Physics-based modeling of the ceramic response for purposes of predicting 
ballistic events requires physical understanding of the nature of the dynamic fracture and 
fragmentation behavior of the brittle solids.  Efforts in the present section continue to build 
on the physics of fracture and fragmentation of brittle solids in the ballistic event. 

The statistical features of brittle fracture have been pursued since the early decades of the last 
century. Early theoretical work was motivated principally by rock and mineral crushing 
technology along with mining and quarry blasting applications.  This historical work is not 
summarized here.  However, a recent review addressing this history is scheduled for 
publication in the near future and is recommended [Grady, 2006].  Much of the effort of 
earlier workers [e.g., Gaudin, 1926; Bennett, 1936; Lienau, 1936; Gilvarry, 1961; Gaudin 
and Meloy, 1962] focus on the characterization of brittle fracture through a Poisson statistical 
process.  This approach to the statistics of brittle fragmentation now appears to be in error.   

Some understanding of the statistics of brittle fragmentation is achieved through intriguing 
parallels of the dynamic fragmentation of brittle solids with hydrodynamic turbulence in 
fluids.  Since the latter is still regarded as one of the remaining unsolved problems of 
classical physics, it is perhaps not surprising that a satisfactory statistical theory of brittle 
fracture and fragmentation continues to elude a sound theoretical basis 

Hydrodynamic Turbulence 
Turbulence can occur in fluids described by the Navier-Stokes equations where governing 
material properties are relatively few in number.  A macroscopic length scale L , a 
characteristic velocity V , and a viscosity η  are adequate to reveal the essential features.  
The length L  is, for example, the size of the structure imparting motion to the fluid while V  
is the nominal velocity impressed on the fluid.  When the dimensionless Reynolds number 

/eR LV η=  is sufficiently large turbulence arises in the fluid motion. 

Turbulence in the flow emerges because large scale laminar flow is not sufficient to dissipate 
the energy through viscous friction.  Turbulence is then the activation, the growth, and the 
motion, of irregular fluid disturbances on successively smaller length scales necessitated by 
dissipation requirements of the fluid.  The essence of turbulence is the transient and steady 
state motion of a hierarchy of submotions over a wide range of length scales.  This cascade to 
successively smaller length scales in the turbulence process proceeds until velocity gradients 
of order /V λ  are achieved that are adequate to support the necessary viscous dissipation.  
The range of length scales between L  and λ  is determined by the Reynolds number and 
increases with increasing Reynolds number. 
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The range of submotions of length scales bounded by  L  and λ , and reasonably removed 
from either is commonly called the inertial range [e.g., Falkovich and Sreenivasan, 2006].  
Invariance to scale and self-similar physics is expected within the inertial range.  
Kolmogorov (1941) argued for such scale invariance on dimensional grounds, and arrived at 
a power law dependence of features of the turbulent motions on length scale over the inertial 
range.  Recent theoretical work on turbulence suggests that the scale invariance of 
Kolmogorov is not fully realized [Chen et al., 2005].  For present purposes, however, such 
scale invariance, or near-scale invariance, is a crucial observation of hydrodynamic 
turbulence, and offers a perspective for understanding the nature of dynamic brittle 
fragmentation. 

Catastrophic Fracture 
Striking parallels to hydrodynamic turbulence are seen in the catastrophic fracture and 
fragmentation of brittle solids.  Consider a solid object of characteristic size L  composed of 
brittle material such as glass or a high-strength ceramic that is subjected to a compressive 
load inducing a nominal elastic specific strain energy ε .  Natural fracture of the object 
initiates when critical stress conditions are achieved at some site in the body.  Once initiated 
fracture proceeds rapidly and explosively, converting the elastic strain energy into surface 
fracture energy γ  and kinetic energy of the ejected fragments.  

Fracture in brittle solids is weakly dissipative, however, and failure through one or several 
through-going cracks is far from adequate to absorb the initial stored elastic strain energy.  
Consequently, during failure, fracture on successively finer length scales progresses though a 
cascade of crack branching until a length scale adequate to the dissipation of the initial 
elastic strain energy is achieved.  This length scale is expected to scale as /λ γ ρε∼ , with 
ρ  the material density.  This limiting length scale λ  is a number of decades smaller than the 
characteristic size L  of the body. 

Within the inertial range x Lλ < <  there is no length scale governing the physics of the 
catastrophic fracture cascade.  Consequently, the fragment count within this range is 
expected to exhibit a power-law dependence on fragment size.  As fragment size approaches 
the limiting dissipation length scale λ  the functional dependence will diverge from the 
power-law dependence exhibiting an impending awareness of the dissipation limit length 
scale λ .   

Although the specific functional form for the fragment number distribution is not known, an 
appropriate relation for the number distribution is readily guessed.  The functional form, 

 ( )
1 ( / )

oNN x
x δλ

=
+

, (53) 

exhibits the necessary power-law dependence for x λ  and the appropriate impending 
awareness within the range x λ∼ .  ( )N x  is the complementary cumulative number 
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distribution (number greater than) of fragments while oN  is the total number of fragments.  
The total fragment number will be replaced with ( / )o oN a δσ λ= .  Equation (53) becomes, 

 ( / )( )
1 ( / )oN x a

x

δ

δ

σ λ
λ

=
+

, (54) 

and in the inertial range x λ , 

 ( ) ( / )oN x a x δσ= . (55) 

The exponent δ  is the fractal dimension for the power-law representation of the cumulative 
fragment relation in Equation (55).  The coefficient oa  is a number of order unity and is 
determined by normalization to the total mass of the body. 

The quotient /σ λ  in Equation (54) is the dimensionless ratio of the two limiting length 
scales of the distribution.  This number is thought to be an important feature of the theory.  
The number is the ratio of a largest statistical fragment size σ , which is dependent on the 
system size L , and the limiting dissipation length scale λ .  This number determines the 
magnitude of the inertial range.  It will be large; say / 10nσ λ ≈  where n  may range from 
several to perhaps 10 or more.  The extent of the inertial range will be identified by its 
magnitude in powers of ten as “n-log size reductions”. 

A cumulative probability distribution for the statistical relation follows from Equation (53), 

 ( / )( ) 1 ( )
1 ( / )o

xP x N x N
x

δ

δ

λ
λ

= − =
+

, (56) 

and with probability density, 

 
( )

1

2
( / )( )

1 ( / )

xp x
x

δ

δ

δ λ
λ λ

−

=
+

. (57) 

From Equation (53) or (56) the fragment number increment in the range x λ  is, 

 
1

odN N dx
x

δδ λ
λ

+
⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (58) 

Introducing a fragment mass 3xρ  the mass of fragments of size x  within increment dx  is, 

 
1

3 3
odM x dx N x dx

x

δδ λρ ρ
λ

+
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

, (59) 

and cumulative mass to size x , 
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0

1( )
x

oM x N dx
x

δλδ ρλ
λ

−
⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ , (60) 

or, 

 
3

3( )
3 o

xM x N
δδ ρλ

δ λ

−
⎛ ⎞= ⎜ ⎟− ⎝ ⎠

. (61) 

The integral in Equation (60) incurs a negligible mass error in ignoring the form of the 
function near x λ≈ .  A requirement of 3( ) oM M Lσ ρ= = , the total mass of the body at 
x σ=  constrains the expression for oN  introduced above.  Equation (61) at x σ=  yields, 

 
3

3 3

3o oM L N
δδ σρ ρλ

δ λ

−
⎛ ⎞= = ⎜ ⎟− ⎝ ⎠

. (62) 

Solving for oN , 

 
3

3

3
o o

LN a
δ δδ σ σ

δ σ λ λ
− ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (63) 

provides the coefficient oa .  Equation (61) is then, 

 ( )
n

o
xM x M
σ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (64) 

in the form of the classic Schuhmann equation [Schuhmann, 1940] where 3n δ= − . 

Identifying the surface area of a fragment of size x  as 26x  the incremental distribution 
surface area is, 
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The cumulative fragment surface energy less than size x  is provided by the integral, 
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Turbulance at the Tip of a Fast-Running Crack  

Similarities between hydrodynamic turbulence and catastrophic brittle fracture also are 
evident in the propagation of a singe crack.  The laminar flow of a rapidly shearing fluid 
soon becomes unsettled by the emergence of insipient eddies and vortices as the intensity of 
shearing is increased.  Again, dissipation through laminar viscosity is increasingly 
inadequate to balance the power input.  Energy dissipated at the tip of a fast running crack in 
a brittle solid is known to be a strong function of the velocity of the crack.  Increased 
dissipation is a consequence of the onset microcrack branching instability at sufficiently high 
velocity [Sharon et al., 1991]. Again, microcrack instability is the physical equivalent of 
hydrodynamic turbulence exhibited by the crack in exploring crack-tip deformations capable 
of the needed dissipation. 
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VI Closure  

Application of the ideas put forth in the last section on the catastrophic failure and 
fragmentation of brittle solids to the ballistic performance of ceramics is far from clear.  In 
the several pages presented, we have just scratched the surface of some of the issues on the 
failure and the nature of the failed material as it may relate to armor performance.  It is 
generally recognized that in the terminal ballistic event material in intimate contact with the 
penetrating body, and providing the resistance to penetration, is probably failed and highly 
fractured ceramic.  The specific makeup of the failed ceramic is not known, however, and 
this characterization of the ceramic may be important to the resisting strength of the material.   

Catastrophic failure, leading to the very fine comminution of the ceramic, is directly linked 
to the magnitude of elastic strain energy achieved before failure of the ceramic ensues.  An 
abstraction of the sequence of events occurring as a high velocity kinetic energy penetration 
proceeds in ceramic is illustrated in Figure 19.  An element of the ceramic impeding the 
progress of penetration is identified in the figure.  Key states of this ceramic element, as 
penetration resistance and failure proceeds, are shown.  The element is first illustrated at rest 
and unstrained ahead of the approaching pressure wave accompanying the steady 
penetration.  As the pressure wave subsumes the element, elastic strain energy builds until 
brittle failure of the element occurs.  Strain energy will fuel explosive fracture of the 
element. Intensity of catastrophic fracture is determined by the magnitude of strain energy 
achieved in the element proceeding failure.  

Failure of the element will occur when the 
propagating fracture front reaches the ceramic 
element.  Thus, delaying kinetics of the 
fracture activation and growth is explored in 
some detail in the first technical section of the 
present report and will play a crucial role in 
determine the level of strain energy achieved 
before failure.  Time-depending fracture is 
modeled in this section with a physically 
sensible statistical meso-kinetic representation 
of the material response under the intense 
pressure wave loading.  Failure at sites of 
weakness in the heterogeneous ceramic 
requires the time-dependent development of 
stress concentration as elastic strain 
equilibrates following the rapid pressure 
loading. 

There are reasons to believe that a time-dependent Tuler-Butcher failure criterion would 
adequately model the phenomenological aspects of the ceramic resistance and failure in the 
ballistic event.  The development of a physical model for the impact failure of ceramic plate 

Figure 19:  The sequence of stress-wave loading, ballistic 
resistance, failure, and catastrophic fragmentation of an 
element of armor ceramic.
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Figure 19:  The sequence of stress-wave loading, ballistic 
resistance, failure, and catastrophic fragmentation of an 
element of armor ceramic.

Steady or
Unsteady 
Pressure
Wave

u

Stagnation
Zone

Penetrating
Media

Fracture 
Wave

Strain
Energy
Accumulation

Barrier
Element

Element
Failure

Explosive
Fracture and
Fragmentation

Steady or
Unsteady 
Pressure
Wave

u

Stagnation
Zone

Penetrating
Media

Fracture 
Wave

Strain
Energy
Accumulation

Barrier
Element

Element
Failure

Explosive
Fracture and
Fragmentation



Analysis of Shock and High-Rate Data for Ceramics:  Strength and Failure of Brittle Solids 

ARA Project No. 17168 41

using the Tuler-Butcher criterion in the second technical section, and the comparison with 
available data on the impact breach of glass plate, suggests such a modeling approach is 
appropriate.  Application to a wider range of terminal ballistic resistance and failure 
phenomena seems reasonable.  

The dependence of the post-failure strength of the ceramic on fragment size and distribution 
of the failure-generated debris is not known.  The fracture strength of a single brittle particle, 
however, is known to depend on the size of the particle – increasing as the particle size 
decreases.  Thus, it is sensible to expect the shear resistance of comminuted ceramic to 
depend on the distribution of particle size.  Further, shear resistance should probably increase 
with deformation as the distribution particle size of the comminuted material is further 
reduced. 

A dependence on the shape of the distribution, say the power exponent if a power-law 
description of the distribution, however, is not intuitive.  The importance of such details will 
only be uncovered through a deeper investigation of the underlying physics.  
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